Audio ICs

Band-pass filter for spectral analyzers BA3830S

The BA3830S is a 6 + 1 band band-pass filter for spectral analyzer displays with internal recording indicator output. All of the capacitors comprising the filter are internal capacitors, making it possible to significantly reduce the number of attached components. This enables configuration of compact sets with a high level of reliability.

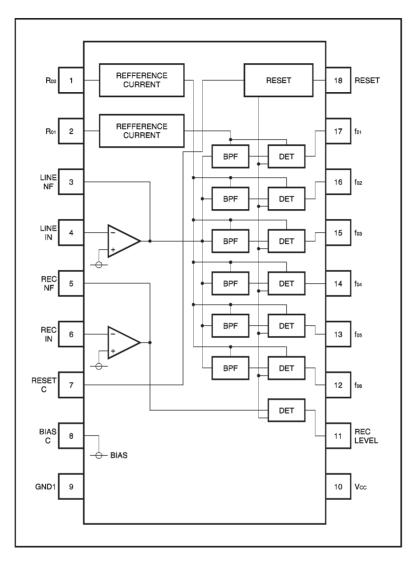
Applications

CD radio cassette players, mini-components, car stereos

Features

- 1) Six internal band-pass filters for spectral analyzers
- 2) Internal input/output for recording indicators
- •Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	9	V
Power dissipation	Pd	600*	mW
Operating temperature	Topr	-25~+75	Ĵ
Storage temperature Tstg		-55~+150	ç


* Reduced by 6.0mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating power supply voltage	Vcc	4.5	—	8.0	V

3) Internal capacitors reduce the number of attachments.

Block diagram

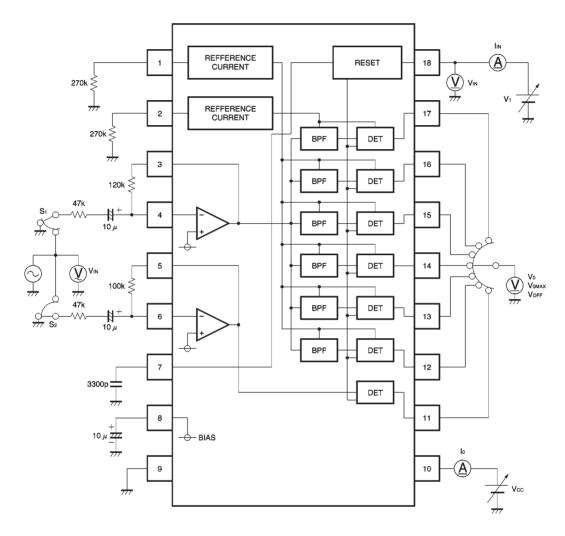
•Electrical characteristics (unless otherwise noted, Ta = 25°C, V_{CC} = 5V, R_L = 10M Ω , R ϕ_1 = 270k Ω , R ϕ_2 = 270k Ω)

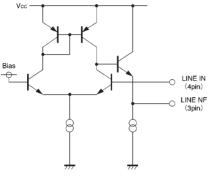
Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions	
Quiescent current	lo	—	3.8	5.2	mA		
Reference output level (LEVEL)	Vol	—3	0	3	dB	$V_{IN} = -30 dBV,$ $V_0 = 1.5V (0 dB)$ When f=center frequencies is input	
Max. output level (LEVEL)	Volmax	3.2	4.2	_	v	V _{IN} =−14dBV, When f=center frequencies is input	
Reference output level (REC LEVEL)	Vor	-3	0	3	dB	V _{IN} =−30dBV, V₀=1.5V (0dB) f=1kHz	
Max. output level (REC LEVEL)	Volmax	3.8	4.8	—	v	V _{IN} =-14dBV, f=1kHz	
Output offset voltage	Voff	—	30	90	mV	With no signal	
Center frequency 1	fo1	49	63	77	Hz	V _{IN} =-30dBV	
Center frequency 2	fo2	117	150	183	Hz	VIN=-30dBV	
Center frequency 3	foз	257	330	403	Hz	VIN=-30dBV	
Center frequency 4	fo4	0.78	1	1.22	kHz	VIN=-30dBV	
Center frequency 5	f05	2.55	3.3	4.03	kHz	VIN=-30dBV	
Center frequency 6	f06	7.8	10	12.2	kHz	VIN=-30dBV	
Input current when Reset pin is HIGH	lin	150	215	280	μA	V _{IN} =5V	
Threshold level when Reset pin is ON	Vth	_	1.4	1.8	v		
Threshold level when Reset pin is OFF	Vth	1.0	1.4	_	v		

*Q is set to 4.5.

ONot designed for radiation resistance.

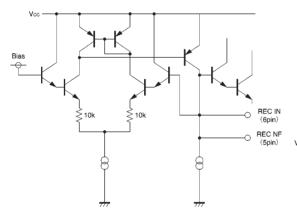
Measurement circuit




Fig.1

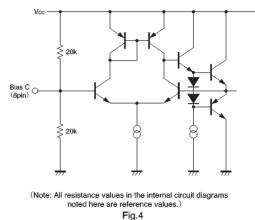
Audio ICs

Circuit operation


(1) LINE and REC input circuits

The LINE and REC input circuits are configured as differential amplifiers, and the gain can be set to any desired value using an external resistor. The input impedance is determined by the external resistor.

(Note: All resistance values in the internal circuit diagrams noted here are reference values.)



(2) Bias circuit

A bias voltage of $V_{\rm Cc}/2$ is applied to each of the circuits. Since the output stage uses a push-pull configuration, a stable bias source can be obtained.

(3) BPF circuit

This is a circuit that selects the required frequency component from the input signal and amplifies it. With this configuration, no external capacitor is needed. In addition, the center frequency is set based on the current, so f_{01} and f_{02} to f_{06} can be set individually, using separate external resistors (pins1 and 2). Q is set to 4.5V (Typ.).

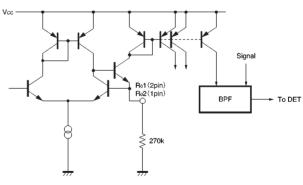
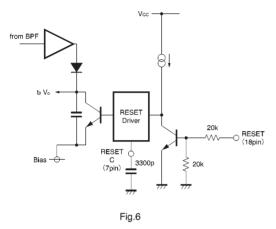
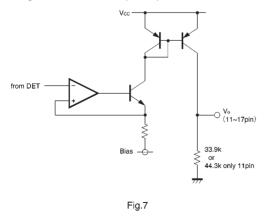


Fig.5

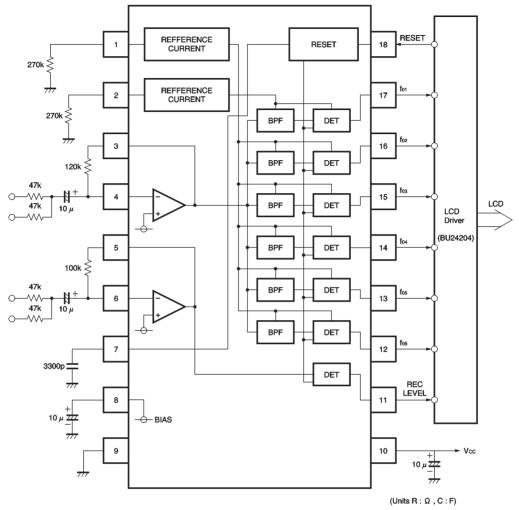

BA3830S

Audio ICs

(4) DET circuit


This circuit carries out phase detection on the signal selected and amplified by the BPF, and holds it at the peak level. It is configured so that all of the capacitors are internal.

The charge that was charged by the internal capacitors in the DET circuit is set to be discharged at 75ms/V (Typ.), but in order to eliminate any effects of disparity, a reset circuit is also included.


(5) Output section circuit

The signal level held at peak level by the DET undergoes V/I conversion and is output. Since the next stage supports MOS (high-input impedance), there is a resistance of $33.9k\Omega$ (44.3k Ω for REC output only) between the output pin and the GND in the IC, so the output value changes based on the input impedance.

Application example

Operation notes

(1) Precautions concerning the load resistance

The various characteristics were measured at the output resistance value of $10M\Omega$ noted in the specifications manual. Moreover, because the output of this IC supports the MOS configuration, be aware that it is current output, and the output changes depending on the input impedance at the next stage.

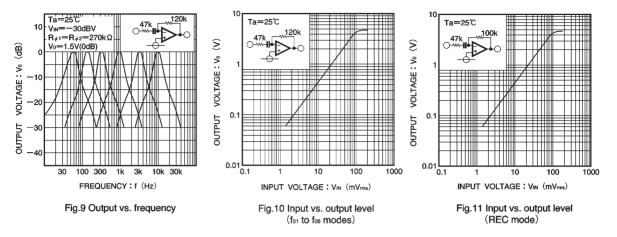
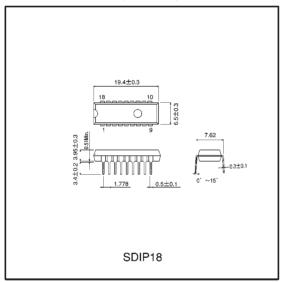

(2) Precautions concerning the RESET capacitor If the reset function is to be used, a capacitor of at least 3300pF is required for RESET C (pin 7). Failing to connect this capacitor can result in erroneous displays, so make sure a sufficient capacitance is provided.

Fig.8


(3) Precautions concerning the coupling capacitor When determining the polarity of the input electrolytic coupling capacitor, the potential relation with the other end of the coupling must be taken into consideration.

Audio ICs

Electrical characteristic curves

External dimensions (Units: mm)

